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Abstract-A method of solution of transient diffusion, e.g. heat conduction, problems in homogeneous 
and isotropic media with internal sources and arbitrary (including nonlinear) boundary conditions and 
initial conditions is proposed. The method is based on the reduction of the problem to one only 
involving surface values of temperature and/or heat flux in the form of an integral equation through 
the introduction of fundamental solutions and the use of Green’s theorem. The integral equation is solved 

numerically for a specific example. 

THIS paper is concerned with the analysis of physical 
problems governed by the linear three-dimensional 

diffusion equation, e.g. transient heat conduction, for 
a homogeneous and isotropic material of arbitrary 

geometry with general initial and boundary conditions 

including nonlingar boundary relationships such as 
those corresponding to radiative heat transfer. 

The formulation is based on the integral equation 
form equivalent to the diffusion equation (e.g. see [l]) 
which allows the reduction of the problem from a form 
which involved the entire body (i.e. the partial differ- 
ential equation) to one which only involves surface 
values (i.e. the integral equation) plus an auxiliary 
equation which expresses the solution at interior points 
as a direct quadrature of the surface values. Thus a 
reduction of one dimension is affected at the price of 
solving an integral rather than a differential equation. 

Under the reasonable assumption that such a general 
problem will undoubtedly require a numerical or 

approximate mpde of solution, such a reduction in 
dimensionality can offer a substantial economy in 
solution, especially, as is frequently the case, if only 
the surface values are sought. Such an approach is 
particularly attractive for those problems involving 
bodies whose boundaries do not fall along usable 
coordinate lines, i.e. are not separable, such that an 
eigenfunction expansion is not feasible. Since boundary 
conditions are applied directly at the surfaces involved, 
the difficulty found so often in finite difference approxi- 
mations to the differential equation of matching mesh 
points to boundary points is avoided. 

While there are a number of “integral methods” 
available for the discussion of transient nonlinear heat 
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transfer problems (e.g. Goodman [2] gives a summary 
of such methods), these are fundamentally different 
than the one proposed here in that the integrals referred 
to there represent balances of heat using boundary- 

layer concepts analogous to those used in fluid mech- 
anics. A transient nonlinear heat-transfer problem in one 
dimension has been solved by Chambre [3] for a semi- 
infinite domain by means of a Laplace transform; the 

boundary condition is a nonlinear relationship between 
temperature and heat flux; but the similarity to the 
present approach is again only superficial. A method 
more closely related to that to be discussed is given 
by Tolubinskiy [4]. Here the appropriate Green’s 
function for a given region with a thermally insulated 

boundary is constructed from the fundamental solution 
by means of “reflections” at the boundary. While an 

integral equation is obtained for the Green’s function, 
the approach is still significantly different from that to 

be discussed here in that the present approach will use 

any convenient Green’s function, e.g. the fundamental 
solution for a point source in an infinite domain, G,, 
regardless of whether or not it satisfies all of the 

appropriate boundary conditions on the given bound- 
aries. This approach leads to an integral equation which 
can be expressed completely in terms of surface values 

of temperature and/or heat flux. Reitzel [5] uses 
boundary sources in one-dimensional problems reduc- 
ing these to convolution integrals by introducing a 
Laplace transform in time but emphasizes the reduction 
to convolution integrals rather than integral equations 
involving spatial coordinates as well. Finally, Rizzo and 
Shippy [6] use a similar approach to the one given 
here but use an integral equation formulation in a 
Laplace transform space which is less direct than the 
present approach. Further details of the present method 
may be found in [7] along with other examples to 
illustrate the approach. 
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Consider a lleat-conduction problem involving a 
region D with boundary S. The density p, the specific 

heat per unit volume c,, and the conductivity k are 
assumed to be constant throughout D. A distributed 
heat source of strength Q is located within D, while 
on S there is a specified relationship between the tem- 
perature 0 and its normal derivative (which is pro- 

portional to the surface heat flux). Finally there is an 
initial temperature distribution at a given time, t = 0, 

specified throughout D. These conditions are described 

by the following equations [ 1] : 

as expected. Then an equation equivalent to equation 

(5) but for steady state problems is 

IrKU(T) = ” pc 
s 

D GQ(ro)dvo 
L’ ” 

where the fundamental solution for an unbounded 

three-dimensional space is now 

G = IjR. (7) 

Consider thegeometrysho~n in Fig. l(a). An infinitely 

H(F,O) = 0()(F); i;ED, t = 0. (3) 

The solution for G for an unbounded three-dimensional 
space is given in [l] as 

G,(R, T) = ~ exp 
2(K7rT)3’2 

(4) 

whereR = lP-Yo12, z = t--f*, K = k&w,) and H is the 
unit step operator. While this may be the most useful 

form for G in this discussion, the following derivation 
is clearly not limited to this particular case. The 

governing integral equation valid for any G which has 
an appropriate singularity at r = rfl, t = to is 

/hqr, t) = s Uo(ro)G(v, Fo; t, 0) dV,, 
Do 

where i = 4n, 27r, or 0 depending on where ? ED, ? E S, 
or ? # D and S respectively and where m. is the outward 
normal to Do. As t + co, these results should approach 
the steady state solution. The initial temperature dis- 
tribution effect vanishes as I -+ cc while the integra- 
tions over to for the remaining terms can be carried 
through assuming that 0 and Q no longer depend on to 
(or equivalently that the contribution to the integral 
over to from 0 to cw from those values of to where 
0 and Q were still dependent on to is negligible com- 
pared to the total integral). Upon carrying out the 
integration for G as the fundamental solution, G,. 

s 

‘L 
G, dto = l/R 

0 

+ti 

long cylinder of arbitrary cross-section is cut by a 

plane .X equal to a constant parallel to the cylinder axis, 
z. On the surface of the cylinder a heat flux, i.e. a 

normal derivative of the temperature, is specified as a 
function oftimeand position; while on the plane surface 

the temperature is given. If these values are independent 
of the coordinate z, the problem reduces to a two- 

dimensional case. By taking the representative Green’s 
function to be the superposition of equal and opposite 

Y 

x = constant 

(a) 

fb) 

FIG. I. Geometry for two-dimensional problems: cylinder 
cut by a plane parallel to the cylinder axis, subjected to heat 
flux f(4) on curved face with constant temperature main- 

tained on plane face. 
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fundamental solutions placed symmetrically with re- 

spect to the plane surface, the integrals over this plane 

surface will be known leaving the unknown variables 

appearing only in integrals over the remaining cylinder 

surface. 
As a specific example, consider the cylinder to be 

circular of radius a in a cross-section with the plane 
surface cutting off a section of angle 27 as shown in 
Fig. l(b). Take the initial temperature field, the pre- 
scribed temperature on the plane surface, and the 
interior heat source all to be zero. These terms would 

only contribute known quantities to the calculations if 
this were not the case. Finally, take the field point to 
lie on the cylinder surface, r = a. Then equation (5) 

requires 

The primes will be dropped in the following equations, 

and the variable c( will be used for ~!?(a, 4, t). Then 

equation (8) becomes 

~+G*.f(do) d4o (10) I 
where 

G*(r, ro; 440; t, to) 

= f {exp[-pZ+/?] -exp[-$/rlJ (11) 

with p+ and p_ as shown in Fig. l(b) representing 

the distance from the field point to the positive source 

where r is the boundary of that portion of the cylinder 
and negative source points (r+,4+)‘and (r-,4-), 

cross-section, not including the plane x = a cos y, and 
respectively. These are given in the xo,yo coordinate 

lying in the plane z = 0 but excluding the field point ?. 
system. The x0 coordinates of these points are sym- 

Since 0 is independent of z, the z. integration may be 
metric about x = cos y and the y. coordinate are 

carried out leaving an integral equation involving only 
equal. Therefore r+ sin 4 + = r- sin 4 _ and r+ cos 4 + + 

one spatial coordinate, 4. Alternatively, the two- 
r- cos 4 _ = 2 cos y leading to 

dimensional fundamental solution could have been 
used. By taking the specific case of the incident heat p: = l+r2+-2r+ cos(~$+-4) (12) 
flux as a step function in time with arbitrary depen- 
dence in the remaining spatial coordinate, and 

(9) p2=1+r:+2r+cos(+++~$) 

-4cosy(cosy-r+ cos4+-cosf$). (13) 

where the maximum value of f(4) is one and H(t) is 
a unit step. This becomes an integral equation of the 

The normal derivative of G* can be calculated at r + = 1 

Fredholm type in space but of the Volterra type in time. 
It is appropriate at this point to non-dimensionalize 

* aG* 2 

these equations to facilitate numerical solutions. The 

g = __ = 
0 dr+ 

;1H1-C0~(~+-441 

length variables shall be scaled to the radius a, time .exp[-2[1-co@+-$)]/r]+[l+cos(4++$) 
to unit 4K/a2, and temperature to a/B, i.e. 

-2cosycos4+]exp[-2[1+2cos($++4) 

t’ = t . (4K/a2) 

r’ = r/a 

0’ = O/aB. 

+2cosY(cosY-cos~+-cos~)]/7]} (14) 

where 4+ is identical with the 4. used above. Then 
equation (9) can be solved numerically for c( using G* 
from equation (10) and aG*/amo from equation (14). 
The integral involving G* can be reduced somewhat t+ s s Y 

dto 
0 

_/@+)G* d4+ = 

_E 1 
[ 

2(l+co~(~++~)+2cosY(cosY-cos~+-cos~)) + 
7 11 

do =D(~ t) 
(15) 



696 RICHARD PAUL SHAW 

where E,(x) is the exponential integral function 

El(s) = 
s 

m [exp( -4)/q] dq (15a) 
x 

but this expression will undoubtedly require numerical 
evaluation even for simple f’(#). Clearly the form of 
the surface flux specified only affects the value of 
n($, t) leaving the remainder of the solution procedure 

unchanged. Thus once the computational scheme is 
established, changes in the form of the incident flux 
can be included with relatively little effort, i.e. changing 
one statement card, 

While there are many numerical and approximate 
techniques available for the solution of integral 

equations (e.g. see [8]), the most direct assumes the 

dependent variable GI to be constant over specified 
intervals in space (4) and time (t). The integral 

equation is then replaced by a set of linear (in this 

case of a linear boundary condition) algebraic equations 
which are simultaneous in space and successive in time. 

Since the only values of the dependent variable required 

are those on a portion of the boundary, the number of 
space steps used may be relatively small, thereby re- 
quiring the solution of a relatively small set of coupled 

algebraic equations at each successive time step. 
The numerical procedure uses iMAX increments in 

$+ from -7 to +T. Each step in #+ is further divided 
into N equal increments to carry out the numerical 

integrations required to determine the coefficient mat- 
rix for the set of algebraic equations and the forcing 
function. n(4. t). 

Define x(L. M) to be the value of a for t,+, = 
A?.(M-l)<t<t,=~Arand &,-i=(L-l)A$< 

4 < $L = LA@ Then equation (9) can be approxi- 

mated by 

IMAX M 

2nn(L.&‘f)= - c c r(l.J).C(L,I;M,J) 
I=, J=, 

+I)& 144) (16) 

where iMAX is the total number of space steps on 

the boundary, L refers to the location 4, 1 to the 

location 4 + , M to the present time step t, J to the 
previous time steps, and 

C(L,I;M,J)= 

i (‘RI, i x ’ 
Fortunately G* will always depend on (I-_“) and 

C wilt only involve three indices. 1, I, and Mf = &f-J 
for a uniform time step. 

Although z has been assumed to be constant over 
specified intervals in space and time, there must be 

some particular choice of d, and t to use as repre- 

sentative of the region. The value of 4 is taken at the 

midpoint of the interval, (L - 1/2)Atp, and the value of 
t is taken at the end of the time step, A&At. Other 

choices should not change the results appreciably. The 
expression for C can be simplified somewhat, Define 

CU., 1, MJ) = F(L, I, MJ) - F(L, I. NJ+ 1) (18) 

where F is given by 

-(2[1+cos(~++#)-2cos~cos~]) f ~-- ..__._-. 
Pi 

* exp[ -p?/MJAt] 
1 

(19) 

F and D will be evaluated numerically using N incre- 
ments in each Ad) interval. 

Then CI may be determined by solving the set of 
IMAX simultaneous linear algebraic equations at each 
time step, t = MAt 

IMAX 

{Z, [274L I) + CCL I, w-w., I))]a(l, M) 

IMAX M-t 

= I)(L,M)- x c %(f.J).C(L,I,MJ) 
I=1 .i=1 

= RHS(Lt M) (20) 

where fi(L, 1) is one if L = 1 and zero otherwise. The 
total contribution of the field point at the current time 
to the summation is contained in the 27ca(L, M) term, 
and any other contribution of this point at this time 

must be surpressed. Clearly the coefficients of the 
current values of CI are independent of M, and an 

inverse coellicient matrix can be defined as 

C’INV(L, I) = [2n?@., I) + C(L, i,O)( l-&L, I))] ‘. 

Then the temperature on the circular portion of the 
boundary, r. is given by 

f MAX 

x(x!/, M) = 1 CINV(L. I). RHS(L, M). (21) 
1= 1 

The index L in F(L, J, MJ) and C(L, I, MJ) may be 
surpressed during these calculations thereby reducing 
the storage requirements. All numerical calculations 
were done with N = 9, IMAX = 10. 

Two values of 7 were used in the numerical cal- 
culations, 90’ and 30’, for two forms of incident flux, 
,f($) = 1.0 and ,f’(4) = (l.O-sin($))/2 representing a 
uniform flux and an asymmetric flux respectively. 
Re?ults for the 90 case (a semi-cylinder) and a uniform 
flux are shown in Fig. 2 for time long enough for 
essentially steady solutions to be obtained. In addition 
to these numerical solutions for the semi-cylinder, 
results are given for comparison purposes for a semi- 
infinite solid and an infinite slab of the same width 
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FIG. 2. Surface temperature for y = x/Z and f(4) = 1.0; AT = 0.05 com- 
pared with analytical solutions for infinite slab and semi-infinite solid. 

FE. 3. Surface temperature for y = n/6 andf(@ = 1.0; AT = 0402 com- 
pared with analyticat solutions for infinite slab. 

of the semi-cylinder under the same initiai and bound- 
ary conditions {e.g. see [9]). The temperature near the 
center of the perimeter is close to and slightly above 
the corresponding infinite slab solution as would be 
expected from the curvature. That near the end, i.e. near 
the surface of zero temperature, was much lower than 
the infinite slab surface solution as would be expected. 

As y decreases from go”, the actual cylinder width 
decreases as (1 --CDS r), and the shape of the cross- 
section becomes elongated. Results for y = 30” and a 
uniform incident Rw are shown in Fig. 3. Solutions 
for the corresponding infinite slab are also given, and 
the results are simiiar to those found for the y = 90’ 
case described above. 

Finally, results far the asymme~c flux (1.0 -sin #)/2 
are given in Figs. 4 for y = 90” and 5 for y = 30”. 

Since the emphasis in this paper is on method rather 
than the solution of particular problems, it would seem 
appropriate in conclusion to compare the approach 
described to alternative methods of solution. While 
there are several numerical and/or approximate tech- 
niques available, e.g. o~honormai expansions [lo] as 
web as the integral methods and transform methods 
discussed in the introduction to this paper, the most 
likely competitor for genera1 geometries would be that 
based on a finite difference appro~mat~on to the 
original equ?tions (e.g. see El 11). 

The number of mesh points in a finite difference 
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Fro. 4. Surface temperature for 7 = n/2 and f(4) = l/2( 1 -sin 4); AT = 0.05. 

Fro. 5. Surface temperature for ;I = 46 andf(+) = l/2(1-sin 4); AT= 0,005. 

method must be greater than the corresponding num- 

ber in the integral equation approach since the former 
involves one more dimension. However, the calcula- 
tions to obtain the coefficients in the integral equation 
approach are much more complicated. Furthermore 
the integral equation approach will not immediately 
give the solution everywhere as would the finite differ- 
ence scheme. On the other hand, boundary conditions 
are applied directly on the boundaries rather than being 
interpolated as in a finite difference method. 

If the solution is only sought on the boundary 
surface (which is frequently the surface of interest), it 
appears that the integral equation approach has some 
advantage over the finite difference scheme-particu- 
larly if many points (i.e. a fine mesh) are to be used. 

Another class of problems in which the integral 

equation approach is probably superior to finite differ- 
ences is that involving unbounded media with some 
internal surface on which boundary conditions are 
specified. Here the Green’s function can be chosen to 
reduce the problem to involve values only on the 
interior surface. 

On the other hand, the extensions of the integral 
equation approach to inhomogeneous media seems at 
this point limited to specific one-dimensional problems 
using, for example, the fundamental solution of 
Cholewinski and Haimo [12]. The corresponding ex- 
tension for finite difference methods does not suffer 
from this limitation in theory but essentially only in- 
volves “more arithmetic,” at least in principle. 
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UN APPROCHE DE LA DIFFUSION PAR UNE EQUATION INTEGRALE 

R&sum&On propose une mtthode de r&solution des probltmes de diffusion transitoire (conduction 
thermique en particulier) dam des milieux homogtnes et isotropes, avec des sources internes, des 
conditions aux limites arbitraires (incluant laaonlintaritt) et des conditions initiales. La mCthode est 
bas&e sur la riduction & un probltme de distribution surfacique de temp&ature ou de flux thermique 
sous la forme d’une Cquation inttgrale par l’introduction de solutions fondamentales et par I’utilisation du 

thkortme de Green. L’Cquation inttgrale est rtsolue numtriquement pour un exemple particulier. 

EINE INTEGRALGLEICHUNGSNAHERUNG FUR DIFFUSION 

Zusammenfassung-Eine LBsungsmethode fiir instationire Diffusionsprobleme und der Wlrmeleitung 
in homogenen und isotropen Medien mit Grtlichen Quellen und beliebigen (such nichtlinearen) 
Rand- und Anfangsbedingungen wird vorgeschlagen. Die Methode basiert auf der Reduktion auf ein 
Problem, das nur noch die Temperaturen und/oder den Wzrmestrom in Form einer Integralgleichung 
enthglt, die man durch Einfiihrung von Fundamentallasungen und die Verwendung des Green’schen 

Theorems erhllt. Die Integralgleichung wird numerisch fiir ein spezifisches Beispiel gel&t. 

MHTEl-PAJlbHAR @OPMYJIMPOBKA 3AflAL(M AM@@Y3MM 

A moTaum - flpennoxeH MeTOn peuteHm 3anaq HCCTalWOHapHOii @i@$y3tft4, HanpwMep, Tenno- 

” pOBOL,HOCTN B OnHOpOLtHblX H ti3OTpOnHblXCpenaX C BHyTpeHHHMt4 HCTO’tHWKaMH CI npOC13BOnbHbtMII 

(EtKnH3’taR HenHHeiiHble) rpaHWtHblMM H Ha’tanbHblMH yCJtOBtiflMti. MeTon OCHOBaH Ha CBeDeHHM 

IIpO6neMbl K 3ana‘tC CO 3HaWHLi11MM TOnbKO TeMnepaTypbl cl/NJtH TCIUtOBOrO t,OTOKa Ha nOBepXHOCTM 

B 4OpMe HHTCrpanbHOrO ypaBHCHHfl ItyTiiM BBCLlCHHIl @yHL,aMCHTanbHblX peL”eH&, H HCnOnb30BaHMR 

Teopwbt I pfltia. MHTerpanbHoe ypasttetille peutetto qtmtettH0 UJIR KwtKpe~ttutu cdyratt. 


