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Abstract—A method of solution of transient diffusion, e.g. heat conduction, problems in homogeneous

and isotropic media with internal sources and arbitrary (including nonlinear) boundary conditions and

initial conditions is proposed. The method is based on the reduction of the problem to one only

involving surface values of temperature and/or heat flux in the form of an integral equation through

the introduction of fundamental solutions and the use of Green’s theorem. The integral equation is solved
numerically for a specific example.

Tuis paper is concerned with the analysis of physical
problems governed by the linear three-dimensional
diffusion equation, e.g. transient heat conduction, for
a homogeneous and isotropic material of arbitrary
geometry with general initial and boundary conditions
including nonlinéar boundary relationships such as
those corresponding to radiative heat transfer.

The formulation is based on the integral equation
form equivalent to the diffusion equation (e.g. see [17])
which allows the reduction of the problem from a form
which involved the entire body (i.e. the partial differ-
ential equation) to one which only involves surface
values (i.e. the integral equation) plus an auxiliary
equation which expresses the solution at interior points
as a direct quadrature of the surface values. Thus a
reduction of one dimension is affected at the price of
solving an integral rather than a differential equation.
Under the reasonable assumption that such a general
problem will undoubtedly require a numerical or
approximate mode of solution, such a reduction in
dimensionality can offer a substantial economy in
solution, especially, as is frequently the case, if only
the surface values are sought. Such an approach is
particularly attractive for those problems involving
bodies whose boundaries do not fall along usable
coordinate lines, i.e. are not separable, such that an
eigenfunction expansion is not feasible. Since boundary
conditions are applied directly at the surfaces involved,
the difficulty found so often in finite difference approxi-
mations to the differential equation of matching mesh
points to boundary points is avoided.

While there are a number of “integral methods”
available for the discussion of transient nonlinear heat

*Research was done while author was an ESSA Post-
doctoral Research Associate (1969-70), Joint Tsunami
Research Effort, University of Hawaii.

693

transfer problems (e.g. Goodman [2] gives a summary
of such methods), these are fundamentally different
than the one proposed here in that the integrals referred
to there represent balances of heat using boundary-
layer concepts analogous to those used in fluid mech-
anics. A transient nonlinear heat-transfer problemin one
dimension has been solved by Chambre [3] for a semi-
infinite domain by means of a Laplace transform; the
boundary condition is a nonlinear relationship between
temperature and heat flux; but the similarity to the
present approach is again only superficial. A method
more closely related to that to be discussed is given
by Tolubinskiy [4]. Here the appropriate Green’s
function for a given region with a thermally insulated
boundary is constructed from the fundamental solution
by means of “reflections” at the boundary. While an
integral equation is obtained for the Green’s function,
the approach is still significantly different from that to
be discussed here in that the present approach will use
any convenient Green’s function, e.g. the fundamental
solution for a point source in an infinite domain, G,
regardless of whether or not it satisfies all of the
appropriate boundary conditions on the given bound-
aries. This approach leads to an integral equation which
can be expressed completely in terms of surface values
of temperature and/or heat flux. Reitzel [5] uses
boundary sources in one-dimensional problems reduc-
ing these to convolution integrals by introducing a
Laplace transform in time but emphasizes the reduction
to convolution integrals rather than integral equations
involving spatial coordinates as well. Finally, Rizzo and
Shippy [6] use a similar approach to the one given
here but use an integral equation formulation in a
Laplace transform space which is less direct than the
present approach. Further details of the present method
may be found in [7] along with other examples to
illustrate the approach.
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Consider a heat-conduction problem involving a
region D with boundary S. The density p, the specific
heat per unit volume ¢,, and the conductivity k are
assumed to be constant throughout D. A distributed
heat source of strength Q is located within D, while
on S there is a specified relationship between the tem-
perature ¢ and its normal derivative (which is pro-
portional to the surface heat flux). Finally there is an
initial temperature distribution at a given time, t =0,
specified throughout D. These conditions are described
by the following equations [1]:
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The solution for G for an unbounded three-dimensional
space is given in [1] as
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GolR) =3 Sn exp{-zg]mn @

where R = |[F—Fol?, 1 = t—to, kK = k/{(pc,) and H is the
unit step operator. While this may be the most useful
form for G in this discussion, the following derivation
is clearly not limited to this particular case. The
governing integral equation valid for any G which has
an appropriate singularity at r = rq, t = £ IS
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where A = 4n, 2x, or O depending on where e D, FeS,
or7¢ D and § respectively and where m, is the outward
normal to Dg. As t — o, these results should approach
the steady state solution. The initial temperature dis-
tribution effect vanishes as ¢t — co while the integra-
tions over t, for the remaining terms can be carried
through assuming that 8 and Q no longer depend on t
{or equivalently that the contribution to the integral
over tp from 0 to oo from those values of to where
# and Q were still dependent on 1, s negligible com-
pared to the total integral). Upon carrying out the
integration for G as the fundamental solution, G,.
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as expected. Then an equation equivalent to equation
(5) but for steady state problems is

Ax()(f)zif GQ(Fo) dVy
£Co J Do

+x g@ {G(f, 7o) 00Fo) 0(7o) E—G—} ds, (6)
So
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where the fundamental solution for an unbounded
three-dimensional space is now

G =1/R. N

Consider thegeometryshownin Fig. 1{a). Aninfinitely
long cylinder of arbitrary cross-section is cut by a
plane x equal to a constant parallel to the cylinder axis,
z. On the surface of the cylinder a heat flux, ic. a
normal derivative of the temperature, is specified as a
function of time and position; while on the plane surface
the temperatureis given. If these values are independent
of the coordinate z, the problem reduces to a two-
dimensional case. By taking the representative Green's
function to be the superposition of equal and opposite

¥

/ (-2)

/

X x = constant
(a)
y
[
\ X

.\N
~
.~
-7\
N
®

/
J
/P+

X ,/\j
Y

{b)

FiG. 1. Geometry for two-dimensional problems: cylinder

cut by a plane parallel to the cylinder axis, subjected to heat

flux f{¢) on curved face with constant temperature main-
tained on plane face.
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fundamental solutions placed symmetrically with re-
spect to the plane surface, the integrals over this plane
surface will be known leaving the unknown variables
appearing only in integrals over the remaining cylinder
surface.

As a specific example, consider the cylinder to be
circular of radius a in a cross-section with the plane
surface cutting off a section of angle 2y as shown in
Fig. 1(b). Take the initial temperature field, the pre-
scribed temperature on the plane surface, and the
interior heat source all to be zero. These terms would
only contribute known quantities to the calculations if
this were not the case. Finally, take the field point to
lie on the cylinder surface, r = a. Then equation (5)
requires

2n0(a, ¢, t)

3 © (a0 @
= J dzogg dsoj {G Z g —G} dzo (8)
0 r - omg omg

where I is the boundary of that portion of the cylinder
cross-section, not including the plane x = a cos y, and
lying in the plane z = 0 but excluding the field point 7.
Since 6 is independent of z, the z, integration may be
carried out leaving an integral equation involving only
one spatial coordinate, ¢. Alternatively, the two-
dimensional fundamental solution could have been
used. By taking the specific case of the incident heat
flux as a step function in time with arbitrary depen-
dence in the remaining spatial coordinate,

o0
a (@ 0:1)=B.f(9).H{r) ©

where the maximum value of f(¢) is one and H(t) is
a unit step. This becomes an integral equation of the
Fredholm type in space but of the Volterra type in time.

It is appropriate at this point to non-dimensionalize
these equations to facilitate numerical solutions. The
length variables shall be scaled to the radius a, time
to unit 4x/a?, and temperature to a/B, i..

= t.(4x/a?)
' =r/a

0" = 6/aB.
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The primes will be dropped in the following equations,
and the variable o will be used for 8(a, ¢,t). Then
equation (8) becomes

21T(X(¢, t) = J‘l dtoj‘y {—(X(d)o, t())
0 -7

LA f¢0)}d¢o (10)

omg

where

G*(r,10; ¢, do; L, L)

= el -pt /] —expl—p2/e]) (1)

with p, and p_ as shown in Fig. 1(b) representing
the distance from the field point to the positive source
and negative source points (ry,¢+) and (r_,¢-),
respectively. These are given in the xo, yo coordinate
system. The x, coordinates of these points are sym-
metric about x =cosy and the y, coordinate are
equal. Therefore v, singp, = r_sin¢_and r, cos . +
r_cos¢_ = 2cosy leading to

P4 = 14+12 —2r. cos (. — ) (12)
and
pE=1+r%+2r, cos(p+ +¢)
—4 cos y(cos y—r4 cos ¢+ —cos ¢).  (13)

The normal derivative of G* can be calculated atr, =1

oG*  oG* 2

S = or. 12 {~[1—cos(¢+—¢)]
exp[ —2[1—cos(+ — $)]/r] + [1 +cos(d+ +9)
—2cosycos ¢ Jexp[ —2[1+2cos(¢p+ + )

+2cosy(cosy—cos ¢,

—cos@)]/c]} (14)
where ¢, is identical with the ¢, used above. Then
equation (9) can be solved numerically for « using G*
from equation (10) and dG*/dm, from equation (14).
The integral involving G* can be reduced somewhat

J drof [+ )G*d¢+—J 1. ){ [ R "’”]

E [2(1 +¢08(¢p+ + ) +2cos y(cos y—cos ¢ 4
— Ly

T

— cos d)))]} dp.=D.1) (1)
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where E(x) is the exponential integral function

Eifx)= f [exp{—q)/q] dg (15a)
but this expression will undoubtedly require numerical
evaluation even for simple f(¢). Clearly the form of
the surface flux specified only affects the value of
D(¢p, t) leaving the remainder of the solution procedure
unchanged. Thus once the computational scheme is
established, changes in the form of the incident flux
can be included with relatively little effort, i.e. changing
one statement card.

While there are many numerical and approximate
techniques available for the solution of integral
equations (e.g. see [8]), the most direct assumes the
dependent variable o to be constant over specified
intervals in space (¢} and time (¢). The integral
equation is then replaced by a set of linear (in this
case of a linear boundary condition) algebraic equations
which are simultaneous in space and successive in time.
Since the only values of the dependent variable required
are those on a portion of the boundary, the number of
space steps used may be relatively small, thereby re-
quiring the solution of a relatively small set of coupled
algebraic equations at each successive time step.

The numerical procedure uses IMAX increments in
¢+ from —y to +7. Each step in ¢ is further divided
into N equal increments to carry out the numerical
integrations required to determine the coefficient mat-
rix for the set of algebraic equations and the forcing
function, D(¢. t).

Define «(L, M) to be the value of a for ty-; =
At.(M—1) <t <ty = MAt and ¢, -, = (L—1)A¢ <
¢ < ¢ = LA¢P. Then equation (9) can be approxi-
mated by

IMAX M

nfL My=— Y Y all.J).CIL 1M, J)

=1 J=1

+D(L. M) (16}

where IMAX is the total number of space steps on
the boundary, L refers to the location ¢, [ to the
location ¢, M to the present time step ¢, J to the
previous time steps, and

(2] tr
C(L,I;M,J)zj d¢+J dto
¢,

-

% {apf(?f:‘,{be} (17
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img
Fortunately G* will always depend on (1 —1,) and
C will only involve three indices, 1, [,and MJ =M —J
for a uniform time step.
Although x has been assumed to be constant over
specified intervals in space and time, there must be
some particular choice of ¢ and t to use as repre-

sentative of the region. The value of ¢ is taken at the
midpoint of the interval, (L — 1/2)A¢, and the value of
1 is taken at the end of the time step, MAt. Other
choices should not change the results appreciably, The
expression for C can be simplified somewhat. Define

CL,I,MJ)=F(L ILMJ)-F(L I,MJ+1) (18)

where F is given by

188
F(L,I,MJ) =J

- 1a¢

do. {exp[ —pi/MJAL]

LT (2{1 +cos(¢p+ +¢) —2cosycos ¢])
: 22

* expl — pz.,f‘MJAt]} 19

F and D will be evaluated numerically using N incre-
ments in each A¢ interval.

Then o« may be determined by solving the set of
IMAX simultaneous linear algebraic equations at each
time step, t = MAt
IMAX

Y [2r8(L, 1)+ C(L, 1,0)(1 — &(L, I))]a(I, M)
=1

IMAX M-t
=DIL.M)~ Y Y alJ).C(L,I,MJ)

=1 J=1

= RHS(L, M) (20)
where 8(L, 1) is one if L = I and zero otherwise. The
total contribution of the field point at the current time
to the summation is contained in the 2za(L, M) term,
and any other contribution of this point at this time
must be surpressed. Clearly the coefficients of the
current values of o are independent of M, and an
inverse coefficient matrix can be defined as

CINV(L, )= [2rd(L. 1)+ CUL, 1LOY{L —3(L, ID] ™.

Then the temperature on the circular portion of the
boundary, I, is given by
IMAX
a(lL.M)= Y CINV(L.[}.RHS(L, M).
I=1
The index L in F(L,J,MJ} and C(L,I, MJ) may be
surpressed during these calculations thereby reducing
the storage requirements. All numerical calculations
were done with N =9, IMAX = 10.

Two values of y were used in the numerical cal-
culations, 90" and 30°, for two forms of incident flux,
f{d) =10 and f(¢) = {1-0—sin(¢))/2 representing a
uniform flux and an asymmetric flux respectively.
Results for the 90° case {a semi-cylinder) and a uniform
flux are shown in Fig. 2 for time long enough for
essentially steady solutions to be obtained. In addition
to these numerical solutions for the semi-cylinder,
results are given for comparison purposes for a semi-
infinite solid and an infinite slab of the same width

21
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F1a. 2. Surface temperature for y = #/2 and f{¢) = 1-0; AT = 0-05 com-
pared with analytical solutions for infinite slab and semi-infinite solid.
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FiG. 3. Surface temperature for y = n/6 and f{¢) = 1-0; AT = 0-002 com-
pared with analytical solutions for infinite slab.

of the semi-cylinder under the same initial and bound-
ary conditions {e.g. see [9]). The temperature near the
center of the perimeter is close to and slightly above
the corresponding infinite slab solution as would be
expected from the curvature. That near the end, i.e. near
the surface of zero temperature, was much lower than
the infinite slab surface solution as would be expected.

As vy decreases from 90°, the actual cylinder width
decreases as {1—cosy), and the shape of the cross-
section becomes elongated. Results for y = 30° and a
uniform incident flux are shown in Fig. 3. Solutions
for the corresponding infinite slab are also given, and
the results are similar to those found for the y = 90°
case described above.

Finaily, results for the asymmetric flux {1-0—sin ¢)/2
are given in Figs. 4 for y = 90° and 5 for y = 30°.

Since the emphasis in this paper is on method rather
than the solution of particular problems, it would seem
appropriate in conclusion to compare the approach
described to alternative methods of solution. While
there are several numerical and/or approximate tech-
niques available, e.g. orthonormal expansions {10] as
well as the integral methods and transform methods
discussed in the introduction to this paper, the most
likely competitor for general geometries would be that
based on a finite difference approximation to the
original equations {e.g. see [117).

The number of mesh points in a finite difference
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F1G. 5. Surface temperature for y = /6 and f(¢) = 1/2(1 —sin ¢); AT = 0-005.

method must be greater than the corresponding num-
ber in the integral equation approach since the former
involves one more dimension. However, the calcula-
tions to obtain the coefficients in the integral equation
approach are much more complicated. Furthermore
the integral equation approach will not immediately
give the solution everywhere as would the finite differ-
ence scheme. On the other hand, boundary conditions
are applied directly on the boundaries rather than being
interpolated as in a finite difference method.

If the solution is only sought on the boundary
surface (which is frequently the surface of interest), it
appears that the integral equation approach has some
advantage over the finite difference scheme— particu-
larly if many points (i.e. a fine mesh) are to be used.

Another class of problems in which the integral
equation approach is probably superior to finite differ-
ences is that involving unbounded media with some
internal surface on which boundary conditions are
specified. Here the Green’s function can be chosen to
reduce the problem to involve values only on the
interior surface.

On the other hand, the extensions of the integral
equation approach to inhomogeneous media seems at
this point limited to specific one-dimensional problems
using, for example, the fundamental solution of
Cholewinski and Haimo [12]. The corresponding ex-
tension for finite difference methods does not suffer
from this limitation in theory but essentially only in-
volves “more arithmetic,” at least in principle.
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UN APPROCHE DE LA DIFFUSION PAR UNE EQUATION INTEGRALE

Résumé—On propose une méthode de résolution des problémes de diffusion transitoire (conduction
thermique en particulier) dans des milieux homogénes et isotropes, avec des sources internes, des
conditions aux limites arbitraires (incluant la-nonlinéarité) et des conditions initiales. La méthode est
basée sur la réduction a un probléme de distribution surfacique de température ou de flux thermique
sous la forme d’une équation intégrale par 'introduction de solutions fondamentales et par I'utilisation du
théoréme de Green. L’équation intégrale est résolue numériquement pour un exemple particulier.

EINE INTEGRALGLEICHUNGSNAHERUNG FUR DIFFUSION

Zusammenfassung —Eine Losungsmethode fiir instationdre Diffusionsprobleme und der Wirmeleitung
in homogenen und isotropen Medien mit &rtlichen Quellen und beliebigen (auch nichtlinearen)
Rand- und Anfangsbedingungen wird vorgeschlagen. Die Methode basiert auf der Reduktion auf ein
Problem, das nur noch die Temperaturen und/oder den Wirmestrom in Form einer Integralgleichung
enthilt, die man durch Einfilhrung von Fundamentallosungen und die Verwendung des Green’schen
Theorems erhilt. Die Integralgleichung wird numerisch fiir ein spezifisches Beispiel geldst.

NMHTEIPAJIBHASA ®OPMVYJIMPOBKA 3AJAYU AUODYIUU

A nHoTaumus — Tpeanoxen MeTOn peileHus 3agad HecTaUMOHapHOW auddys3uu, Harmpumep, Tenno-
1 POBOJHOCTH B ONHOPOAHBIX H H3IOTPOMHbIX CPEAAX C BHYTPEHHUMH HCTOYHUKAMHU U TPOU3BOJIbHBIMH
( BKNOYAs HENHWHEHRHBIE) IPAHMYHLIMM M HAYaibHbIMHM YC/IOBUSIMH. METOA OCHOBaH Ha CBEAEHUM
npobeMbi k 3a1a4e CO 3HAYEHHAMH TOJILKO TEMNEPaTypbl H/WIIH TEMIOBOrO NOTOKA HA MOBEPXHOCTH
B (hOpMe HHTErpanbHOro ypaBHEHUS NyTéM BBeAEHHS (yHAAMEHTANbHbIX PELUEHUI U HCITONBLIOBAHUA
Teopembl I'puHa. MHTErpanbHoe ypaBHEHHE PELUEHO YUCAEHHO [UIA KOHKPETHOIO CiiyYas.



